EE 508 Lecture 16

Filter Transformations

Lowpass to Highpass Lowpass to Band-reject

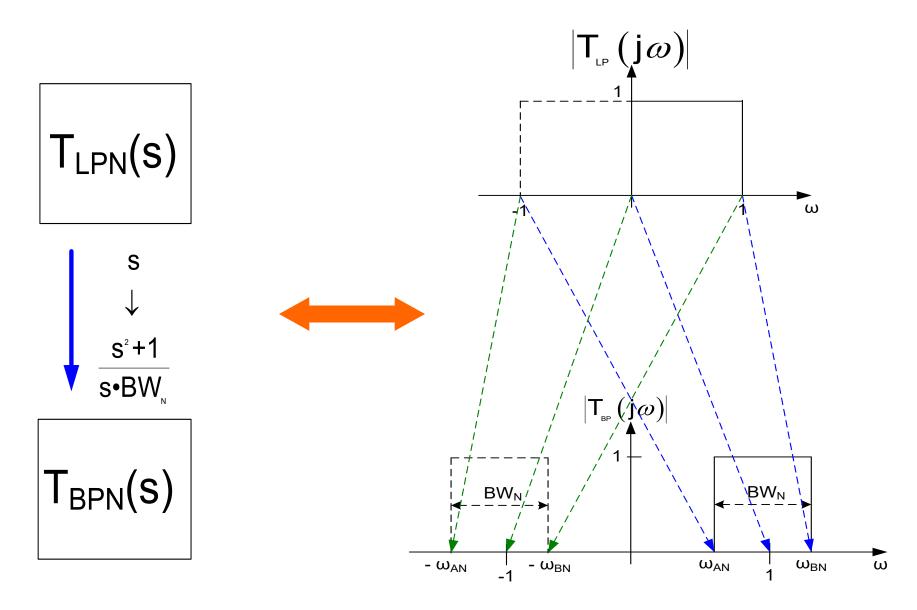
Filter Synthesis

Review from Last Time

Standard LP to BP Transformation $s \rightarrow \frac{s^2 + 1}{s \cdot BW_s}$

- Standard LP to BP transform is a variable mapping transform
- Maps j ω axis to j ω axis
- Maps LP poles to BP poles
- Preserves basic shape but warps frequency axis
- Doubles order
- Pole Q of resultant band-pass functions can be very large for narrow pass-band
- Sequencing of frequency scaling and transformation does not affect final function

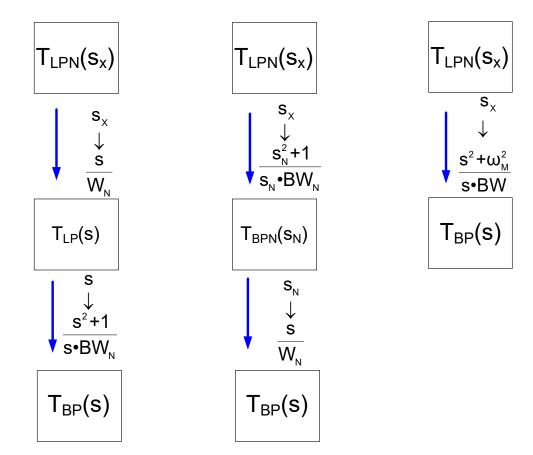
Review from Last Time Standard LP to BP Transformation



Review from Last Time Standard LP to BP Transformation

Frequency and s-domain Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)



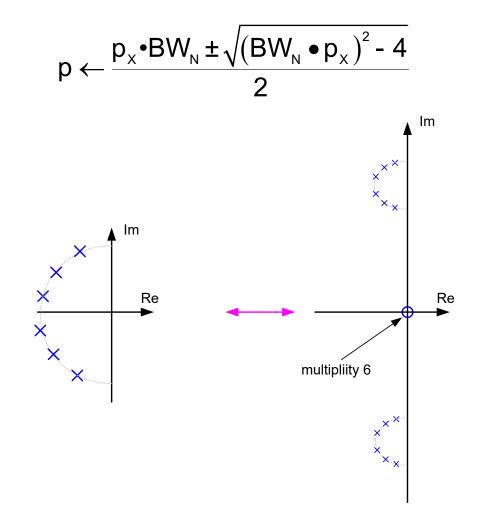
All three approaches give same approximation

Which is most practical to use?

Often none of them !

Review from Last Time Standard LP to BP Transformation

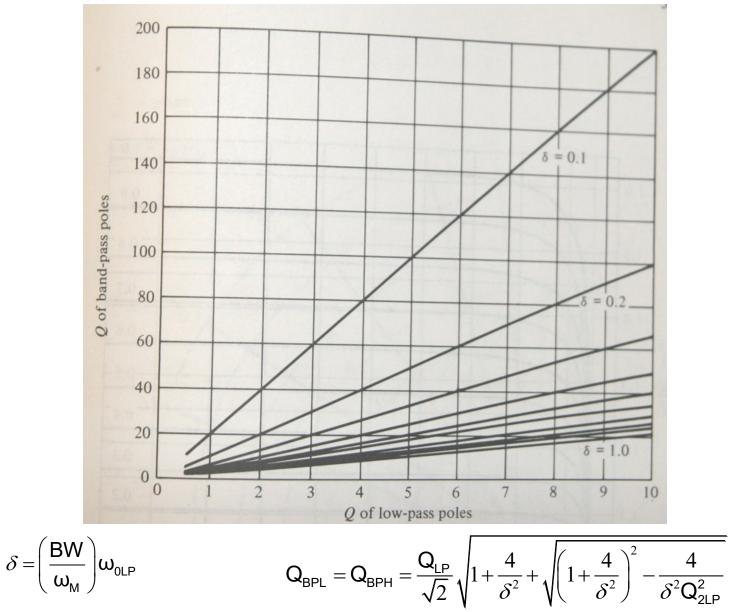
Pole Mappings



Note doubling of poles, addition of zeros, and likely Q enhancement

LP to BP Transformation

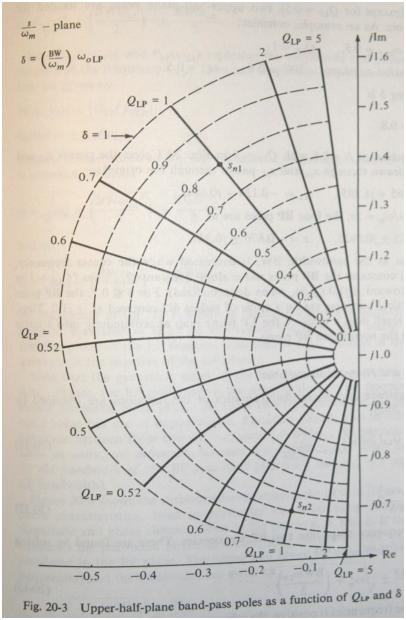
Pole Q of BP Approximations



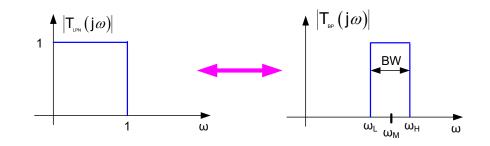
LP to BP Transformation

Pole locations vs Q_{LP} and δ

$$\delta = \left(\frac{\mathsf{BW}}{\omega_{\mathsf{M}}}\right) \omega_{\mathsf{OLP}}$$



LP to BP Transformation



Classical BP Approximations

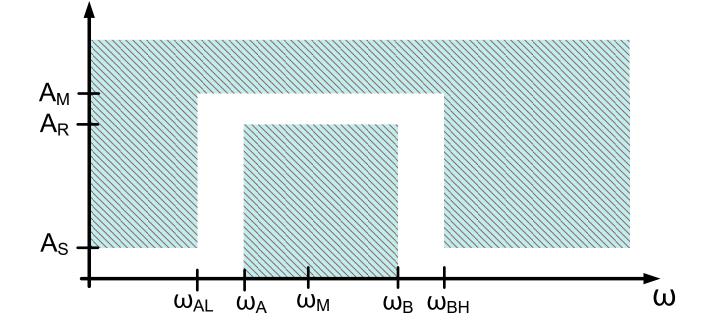
Butterworth Chebyschev Elliptic Bessel

Obtained by the LP to BP transformation of the corresponding LP approximations

$$s \rightarrow \frac{s^2 + 1}{s \cdot BW_{N}}$$

- Standard LP to BP transform is a variable mapping transform
- Maps j ω axis to j ω axis
- Maps LP poles to BP poles
- Maps LP zeros to BP zeros
- Preserves basic shape but warps frequency axis
- Doubles order
- Introduces additional zeros at origin (number equal half the order)
- Pole Q of resultant band-pass functions can be very large for narrow pass-band
- Sequencing of frequency scaling and transformation does not affect final function

Example 1: Obtain an approximation that meets the following specifications



BW= $\omega_{\rm B}$ - $\omega_{\rm A}$

$$\omega_{\rm M} = \sqrt{\omega_{\rm B} \bullet \omega_{\rm A}}$$

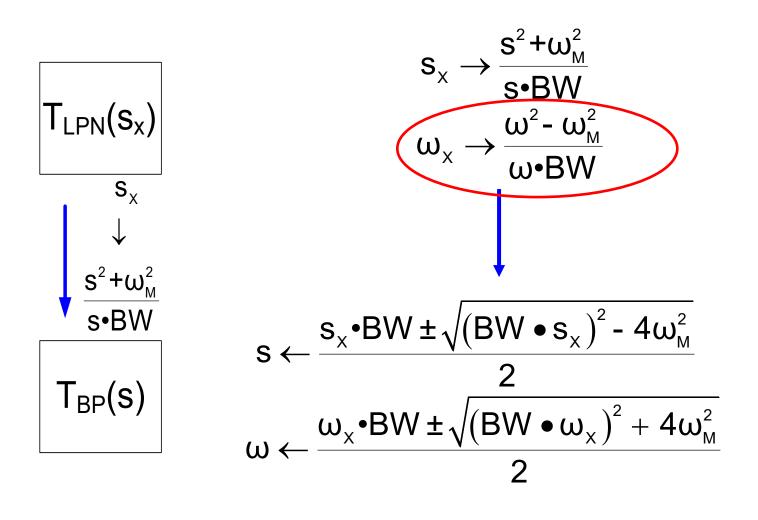
Assume that $\omega_{\text{AL}},\,\omega_{\text{BH}}$ and ω_{M} satsify

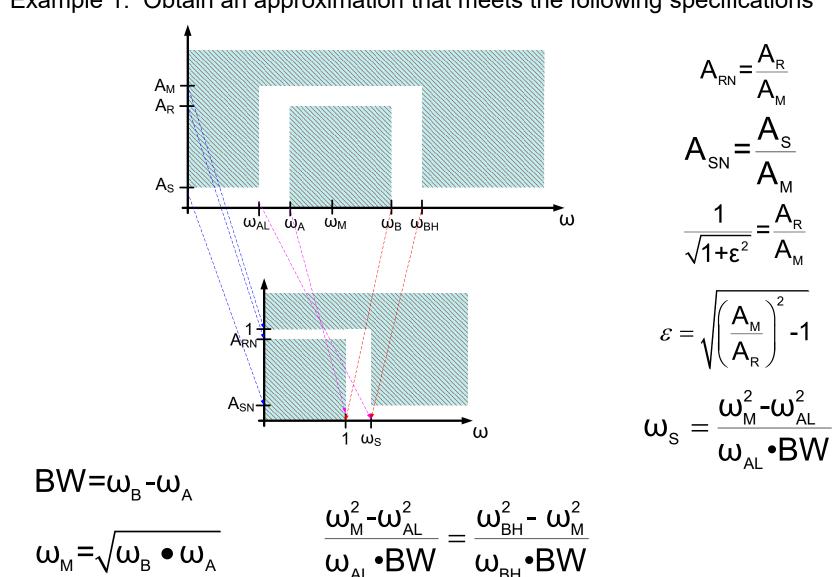
$$\frac{\omega_{\rm M}^2 \text{-} \omega_{\rm AL}^2}{\omega_{\rm AL}} \text{-} \frac{\omega_{\rm BH}^2 \text{-} \omega_{\rm M}^2}{\omega_{\rm BH}} \text{-} 8W$$

Recall from above: Standard LP to BP Transformation

Frequency and s-domain Mappings - Denormalized

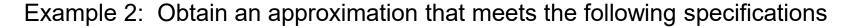
(subscript variable in LP approximation for notational convenience)

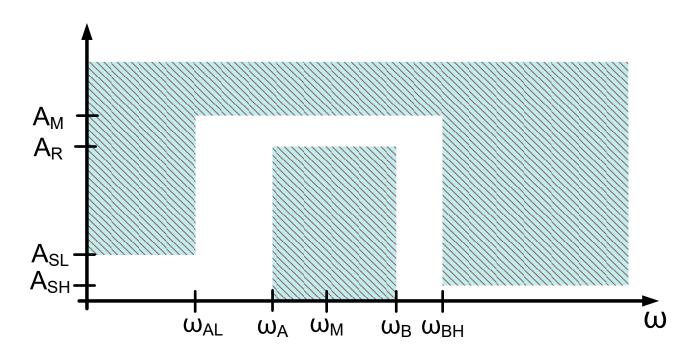




Example 1: Obtain an approximation that meets the following specifications

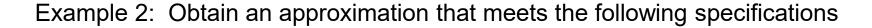
(actually ω_A and ω_{AL} that map to -1 and $-\omega_s$ respectively but show 1 and ω_s for convenience)



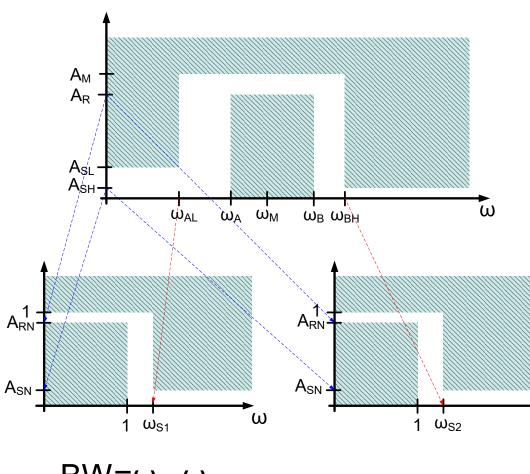


BW= $\omega_{\rm B}$ - $\omega_{\rm A}$ $\omega_{\rm M} = \sqrt{\omega_{\rm B} \cdot \omega_{\rm A}}$ In this example,

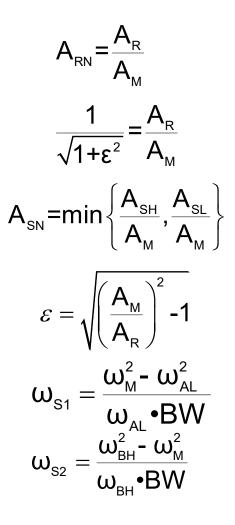
$$\frac{\omega_{\rm M}^2 \text{-} \omega_{\rm AL}^2}{\omega_{\rm AL}} \neq \frac{\omega_{\rm BH}^2 \text{-} \omega_{\rm M}^2}{\omega_{\rm BH}} \text{-} BW$$



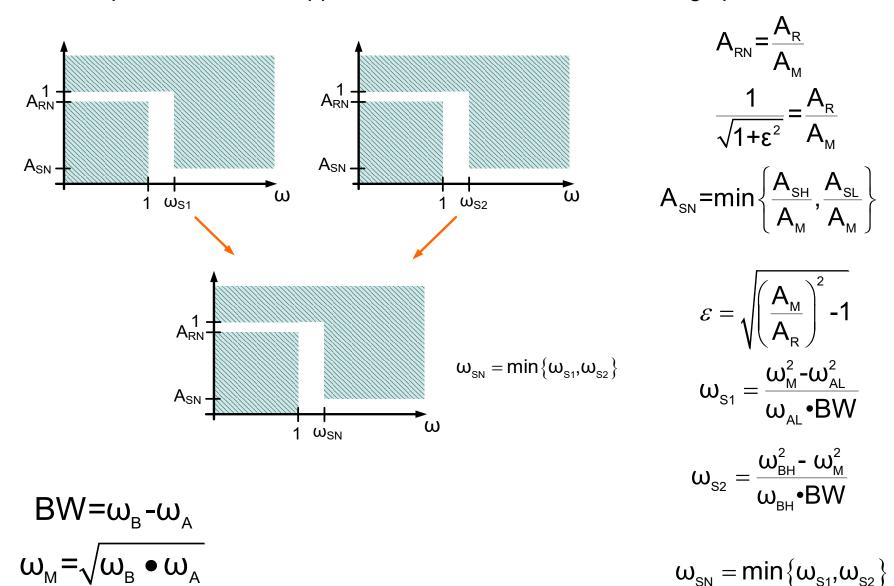
ω



 $BW = \omega_{\rm B} - \omega_{\rm A}$ $\omega_{\rm M} = \sqrt{\omega_{\rm B} \bullet \omega_{\rm A}}$



 $\omega_{_{SN}} = \min\{\omega_{_{S1}}, \omega_{_{S2}}\}$



Example 2: Obtain an approximation that meets the following specifications

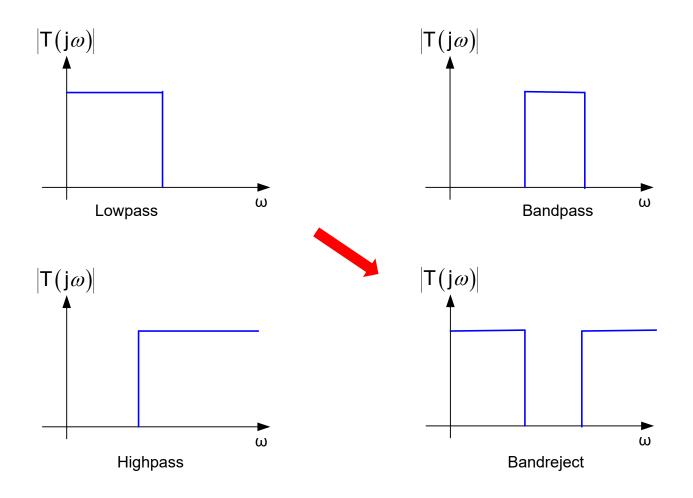
 $\omega_{sN} = \min\{\omega_{s1}, \omega_{s2}\}$

Filter Transformations

Lowpass to Bandpass (LP to BP) Lowpass to Highpass (LP to HP) Lowpass to Band-reject (LP to BR)

- Approach will be to take advantage of the results obtained for the standard LP approximations
- Will focus on flat passband and zero-gain stop-band transformations

Flat Passband/Stopband Filters



LP to BS Transformation

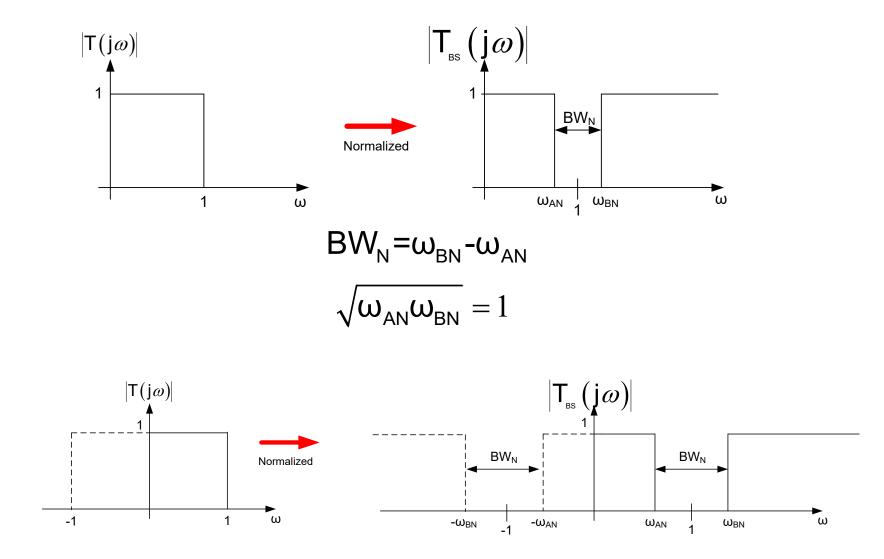
Strategy: As was done for the LP to BP approximations, will use a variable mapping strategy that maps the imaginary axis in the s-plane to the imaginary axis in the s-plane so the basic shape is preserved.

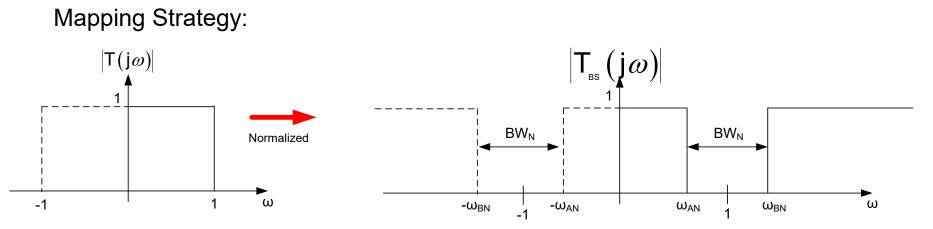
$$\begin{array}{c} X_{IN} \longrightarrow \\ T_{LPN}(s) \longrightarrow \\ \end{array} \begin{array}{c} X_{OUT} \\ \longrightarrow \\ \end{array} \begin{array}{c} S \longrightarrow f(s) \\ T_{BS}(s) = T_{LPN}(f(s)) \end{array} \begin{array}{c} X_{IN} \longrightarrow \\ T_{BS}(s) \longrightarrow \\ \end{array} \begin{array}{c} X_{OUT} \\ \end{array} \begin{array}{c} X_{OUT} \\ \end{array} \end{array}$$

$$f(s) = \frac{\sum_{i=0}^{m_{T}} a_{Ti} s^{i}}{\sum_{i=0}^{n_{T}} b_{Ti} s^{i}}$$

m

LP to BS Transformation



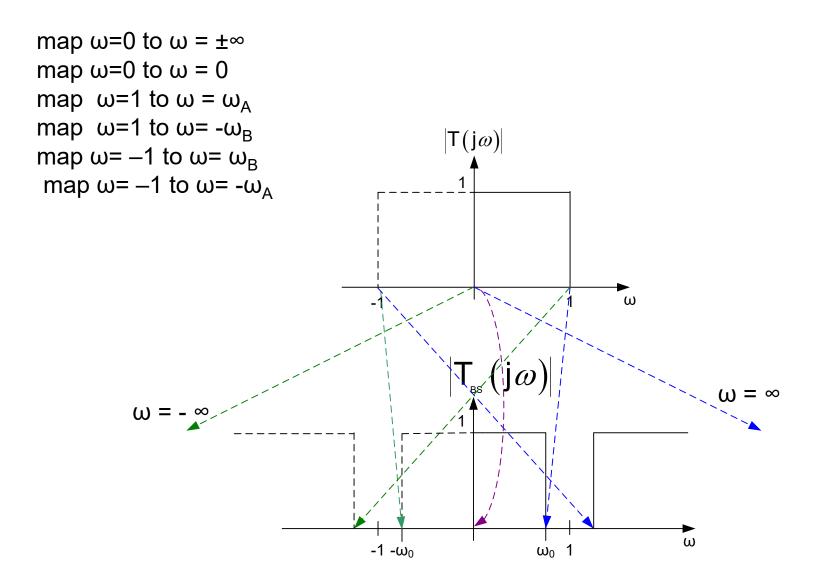


Variable Mapping Strategy to Preserve Shape of LP function:

 $F_N(s)$ should

```
map s=0 to s=\pm j\infty
map s=0 to s= j0
map s=j1 to s=j\omega_A
map s=j1 to s=-j\omega_B
map s=-j1 to s=j\omega_B
map s=-j1 to s=-j\omega_A
```


map $\omega = 0$ to $\omega = \pm \infty$ map $\omega = 0$ to $\omega = 0$ map $\omega = 1$ to $\omega = \omega_A$ map $\omega = 1$ to $\omega = -\omega_B$ map $\omega = -1$ to $\omega = -\omega_B$ map $\omega = -1$ to $\omega = -\omega_A$



Mapping Strategy: consider variable mapping transform

```
F_{N}(s) \text{ should}
map s=0 to s=j\infty

map s=0 to s=j0

map s=j1 to s=j\omega_{A}

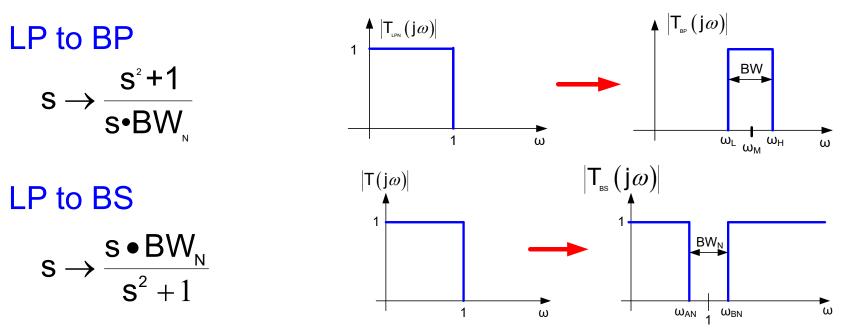
map s=j1 to s=-j\omega_{B}

map s=-j1 to s=-j\omega_{A}
```

map $\omega=0$ to $\omega = \pm \infty$ map $\omega=0$ to $\omega = 0$ map $\omega=1$ to $\omega = \omega_A$ map $\omega=1$ to $\omega=-\omega_B$ map $\omega=-1$ to $\omega=-\omega_B$ map $\omega=-1$ to $\omega=-\omega_A$

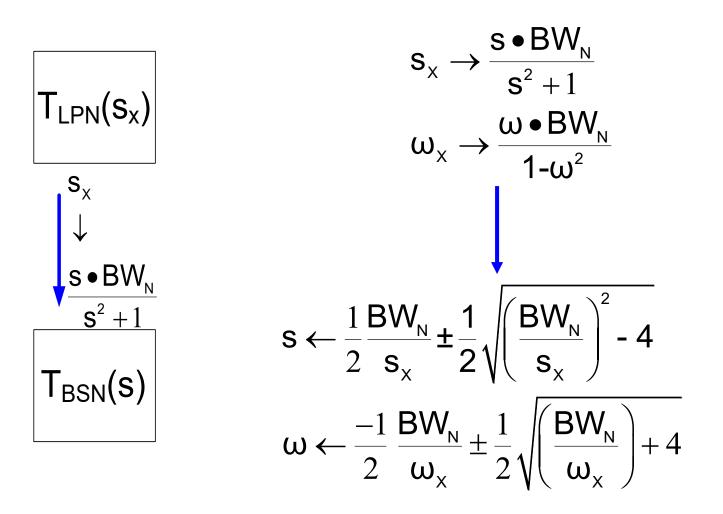
Consider variable mapping

Comparison of Transforms



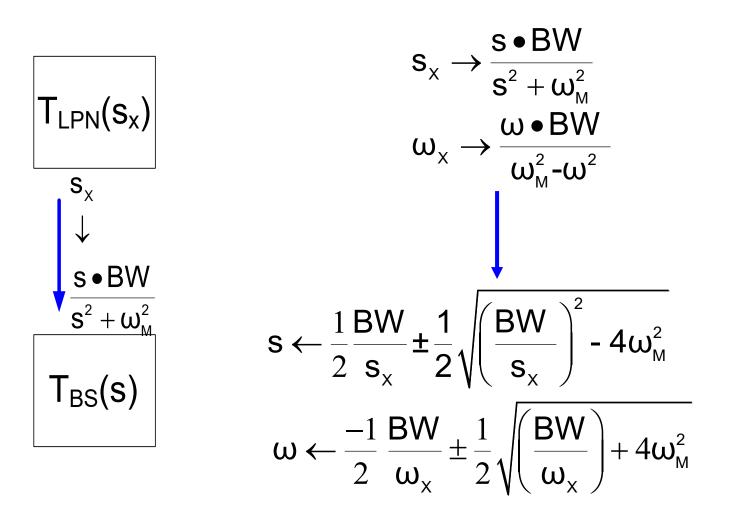
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)

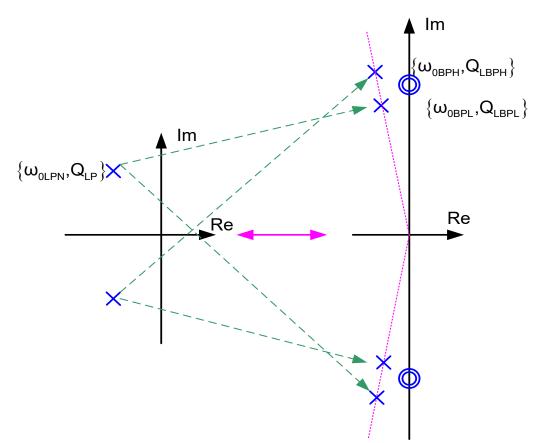


Un-normalized Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)



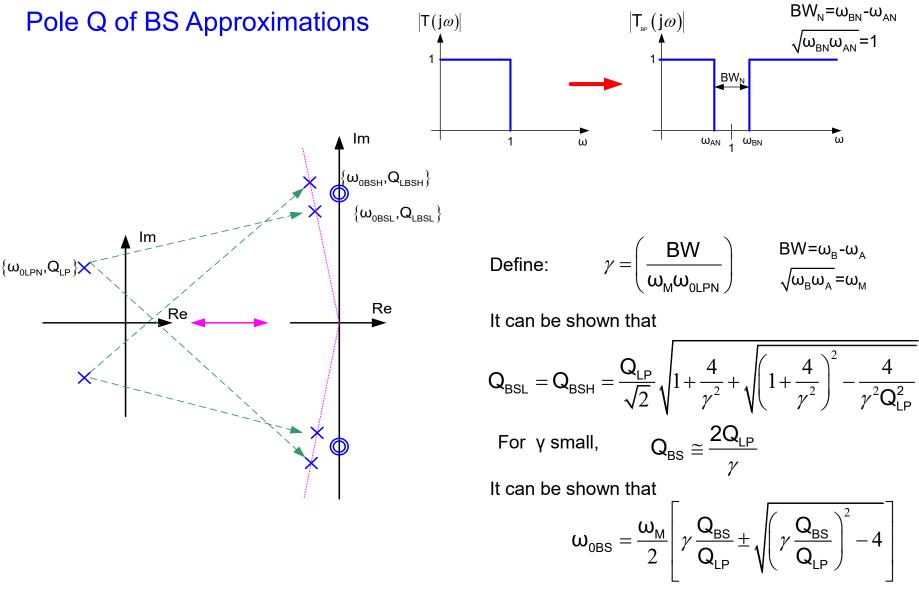
Pole Mappings



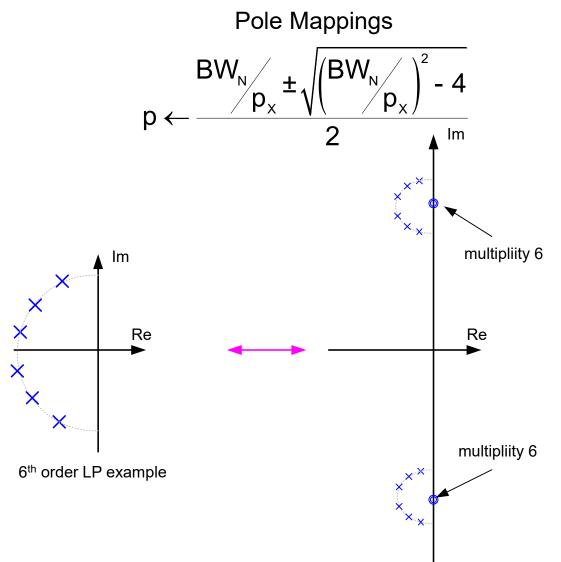
Can show that the upper hp pole maps to one upper hp pole and one lower hp pole as shown. Corresponding mapping of the lower hp pole is also shown

- Poles lie on a constant-Q line
- Zeros at ± j1 (normalized) or at $\pm j\omega_M$ (un-normalized) of multiplicity n

LP to BS Transformation



Note for γ small, Q_{BS} can get very large



Note doubling of poles, addition of zeros, and likely Q enhancement

$$s_x \rightarrow \frac{s \bullet BW}{s^2 + \omega_M^2}$$

- Standard LP to BS transformation is a variable mapping transform
- Maps j ω axis to j ω axis in the s-plane
- Preserves basic shape of an approximation but warps frequency axis
- Order of BS approximation is double that of the LP Approximation
- Pole Q and ω_0 expressions are identical to those of the LP to BP transformation
- Pole Q of BS approximation can get very large for narrow BW
- Other variable transforms exist but the standard is by far the most popular

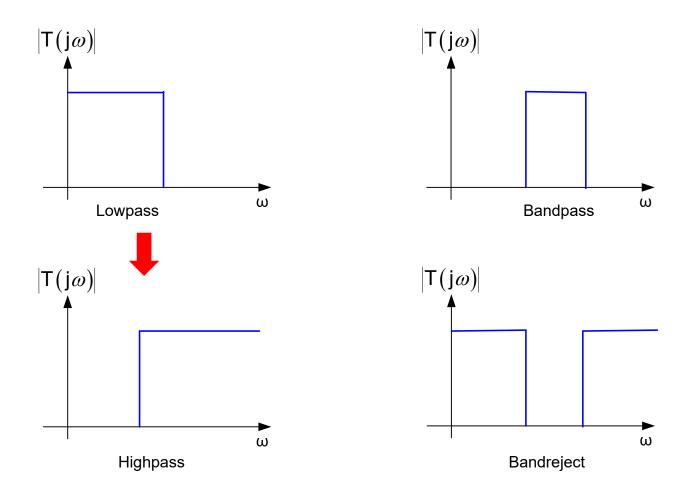
Filter Transformations

Lowpass to Bandpass (LP to BP) Lowpass to Highpass (LP to HP) Lowpass to Band-reject (LP to BR)

• Approach will also be to take advantage of the results obtained for the standard LP approximations

• Will focus on flat passband and zero-gain stop-band transformations

Flat Passband/Stopband Filters



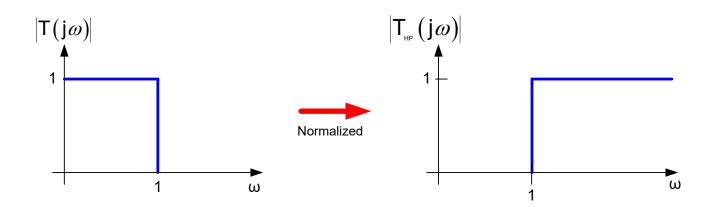
LP to HP Transformation

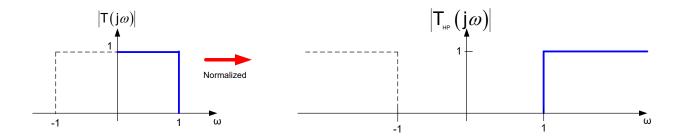
Strategy: As was done for the LP to BP approximations, will use a variable mapping strategy that maps the imaginary axis in the s-plane to the imaginary axis in the s-plane so the basic shape is preserved.

$$X_{IN} \longrightarrow T_{LPN}(s) \xrightarrow{X_{OUT}} S \longrightarrow f(S) \qquad X_{IN} \longrightarrow T_{HP}(s) \xrightarrow{X_{OUT}} T_{HP}(s) \xrightarrow{X_{OUT}} T_{HP}(s) \xrightarrow{X_{OUT}} T_{HP}(s) \xrightarrow{X_{OUT}} T_{HP}(s) = T_{LPN}(f(s))$$

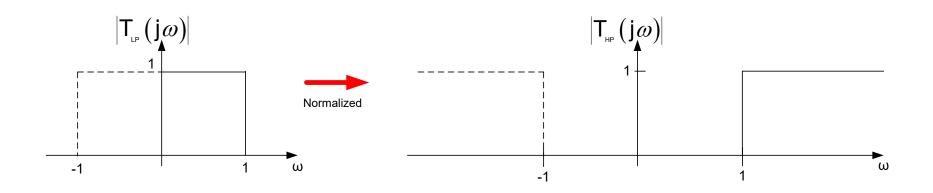
 $\sum_{i=0}^{i} b_{Ti} s^{i}$

LP to HP Transformation





Mapping Strategy:



Variable Mapping Strategy to Preserve Shape of LP function:

 $F_N(s)$ should

map s=0 to s=± j∞ map s=j1 to s=-j1 map s= –j1 to s=j1

map $\omega=0$ to $\omega=\infty$ map $\omega=1$ to $\omega=-1$ map $\omega=-1$ to $\omega=1$

Mapping Strategy: consider variable mapping transform

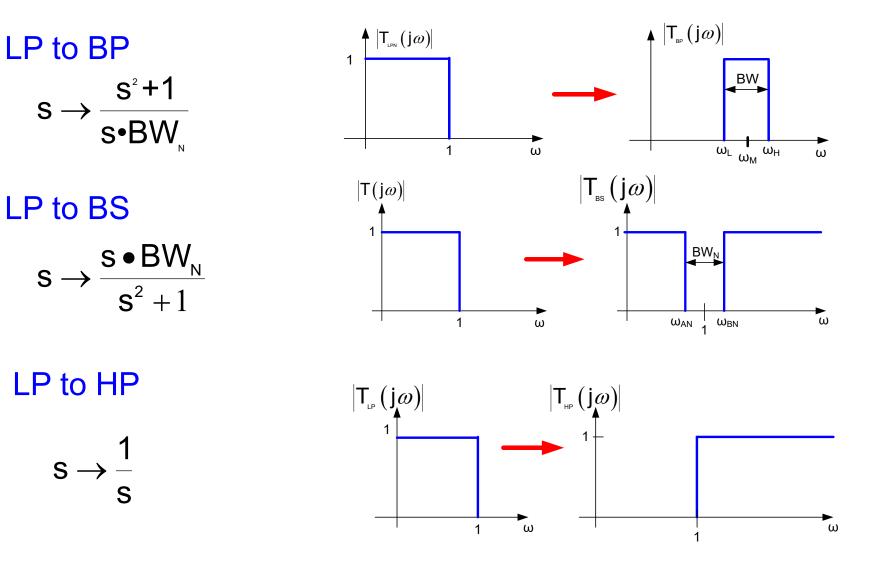
 $F_N(s)$ should

map s=0 to s=± j∞ map s=j1 to s=-j1 map s= -j1 to s=j1

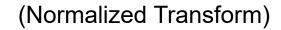
map ω =0 to ω =∞ map ω =1 to ω =-1 map ω = -1 to ω =1

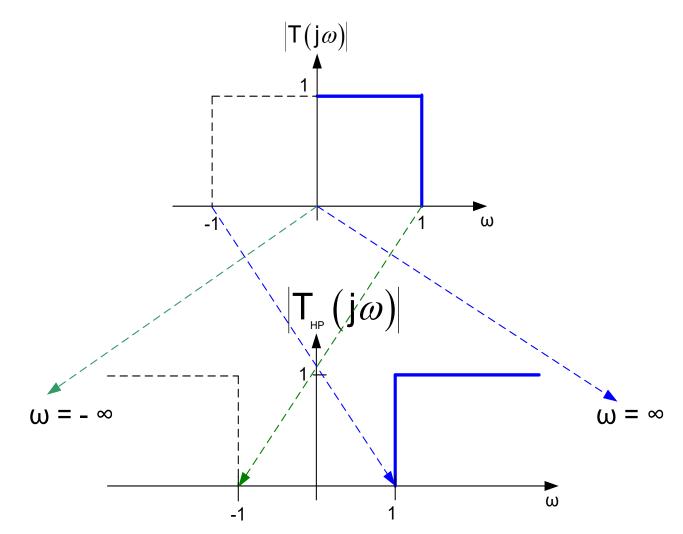
Consider variable mapping

Comparison of Transforms



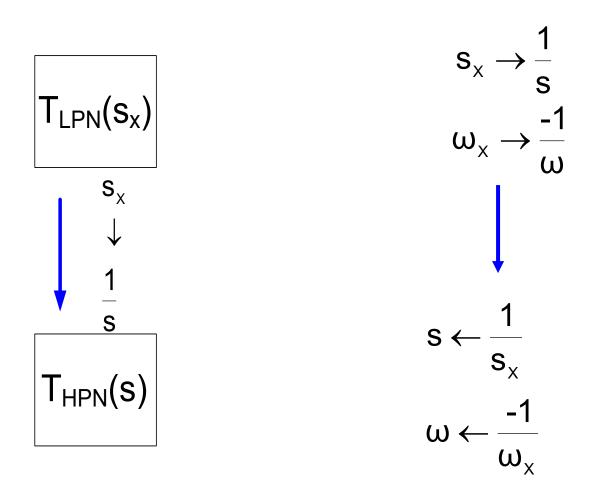
LP to HP Transformation





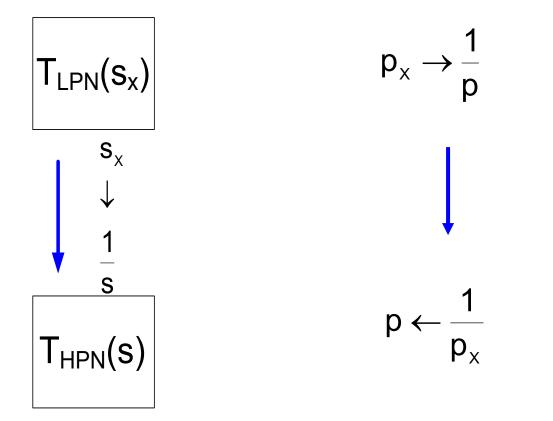
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)

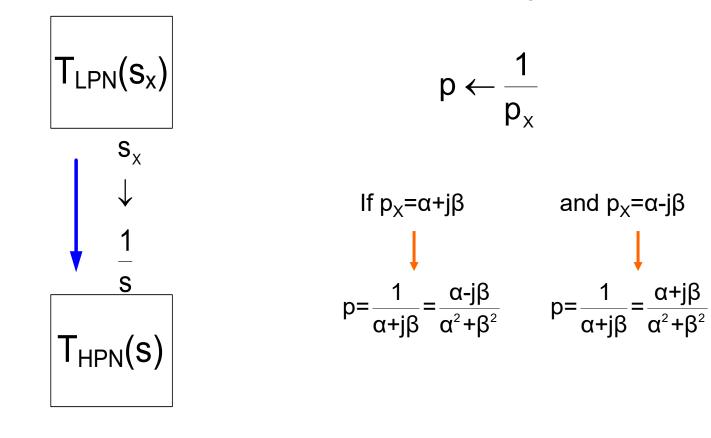


Pole Mappings

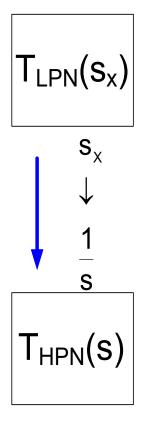
Claim: With a variable mapping transform, the variable mapping naturally defines the mapping of the poles of the transformed function

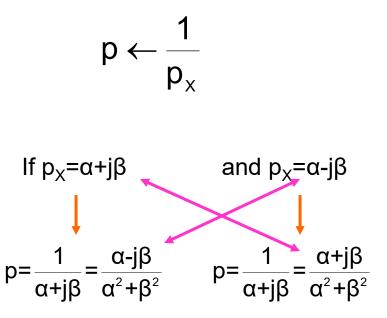


Pole Mappings



Pole Mappings



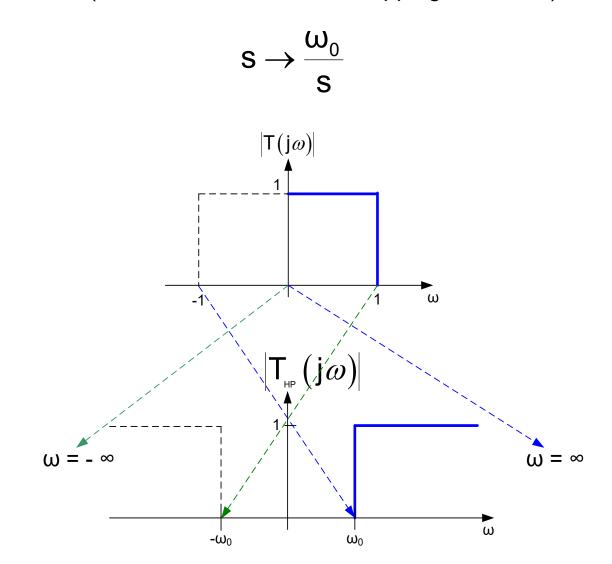


Highpass poles are scaled in magnitude but make identical angles with imaginary axis

HP pole Q is same as LP pole Q

Order is preserved

(Un-normalized variable mapping transform)



Stay Safe and Stay Healthy !

End of Lecture 16